92/38, No.12 Street, Quarter 18, Binh Hung Hoa Ward, Binh Tan District, Ho Chi Minh City, Vietnam.

6.Overall Heat Transfer Coefficient

  • 20/09/2023
  • Steam vs. Hot Water

    The following article demonstrates how to calculate and compare the U value for the heat transfer of steam and hot water through different types of mediums, including film coefficients and the actual wall material itself.

    overall heat transfer coefficient

    The overall heat transfer coefficient is influenced by the thickness and thermal conductivity of the mediums through which heat is transferred. The larger the coefficient, the easier heat is transferred from its source to the product being heated. In a heat exchanger, the relationship between the overall heat transfer coefficient (U) and the heat transfer rate (Q) can be demonstrated by the following equation:

    overall heat transfer coefficient

    where
     

    Q = heat transfer rate, W=J/s [btu/hr]
    A = heat transfer surface area, m2 [ft2]
    U = overall heat transfer coefficient, W/(m2°C) [Btu/(hr-ft2°F)]
    ΔTLM = logarithmic mean temperature difference, °C [°F]

     

    From this equation it can be seen that the U value is directly proportional to Q, the heat transfer rate. Assuming the heat transfer surface and temperature difference remain unchanged, the greater the U value, the greater the heat transfer rate. In other words, this means that for a certain heat exchanger and product, a higher U value could lead to shorter batch times and increased production/revenue.

     

    Calculating the U-value

    Several equations can be used to determine the U value, one of which is:

    overall heat transfer coefficient

    where

    h = convective heat transfer coefficient, W/(m2°C) [Btu/(hr-ft2°F)]
    L = thickness of the wall, m [ft]
    λ = thermal conductivity, W/(m°C) [Btu/(hr-ft°F)]

    Heat transfer through a metal wall

    Alt Text

    In the case of creating hot water for example, heat transfer basically occurs from fluid 1 (source of heat) through a conductive solid (metal wall) to fluid 2 (water, the product being heated). However, film resistance must also be considered. That is why the convective heat transfer coefficient (h), sometimes referred to as the film coefficient, is included when calculating heat transfer between a fluid and a conductive wall.

    Additionally, in certain unique applications such as pharmaceutical or biotechnology process heating, that heat transfer can occur through several layers of wall material. In such instances, the above equation can be adapted by incorporating each layer of the solid’s thickness (L) divided by its thermal conductivity (λ).

    To facilitate example calculations below, the following values may be used as a reference for the convective heat transfer coefficients:

    Fluid Convective heat transfer coefficient (h)
    Water about 1000 W/(m2 °C) [176 Btu/(hr-ft2 °F)]
    Hot Water 1000 – 6000 W/(m2 °C) [176 - 1057 Btu/(hr-ft2 °F)]
    Steam 6000 – 15000 W/(m2 °C) [1057 - 2641 Btu/(hr-ft2 °F)]
    Example comparing effect on U of different heat sources, steam or hot water

    Two carbon steel (λ = 50 W/(m °C) [28.9 Btu/(hr-ft °F)]) jacketed kettles with an inner wall thickness of 15mm [0.049 ft] are used to heat water. One uses hot water as the heat source, while the other uses steam. Assuming heat transfer coefficients of 1000 W/m2 °C [176 Btu/(hr-ft2 °F)] for the water being heated, 3000 W/m2 °C [528 Btu/(hr-ft2 °F)] for hot water, and 10000 W/m2° C [1761 Btu/(hr-ft2 °F)] for steam, let's calculate the U values for both heating processes.

    Carbon Steel Jacketed Kettle – Comparing Hot Water vs. Steam Heat Source

    Hot water:

    Alt Text

    Steam:

    Alt Text

    In this case, steam provides a calculated U-value improvement of 17%.

    Now imagine that the same kettle transfer wall is also lined with glass 1mm [0.0033 ft] thick (λ = 0.9 W/(m °C) [0.52 Btu/(hr-ft °F)]). Including these values into the above U-value equation provides the following results:

    Glass-Lined Jacketed Kettle – Comparing Hot Water vs. Steam Heat Source

    Hot water:

    Alt Text

    Steam:

    Alt Text

    In this case of additional resistance to conductivity, the U-value is still improved, but only by 9%; and this demonstrates how a poor thermal conductor such as glass can greatly interfere with heat transfer.

    So for certain heat exchange equipment such as a carbon steel kettle, changing the heat source from hot water to steam can potentially improve the U-value and heat transfer significantly if the wall material is highly conductive. However, the same dramatic effect is not expected in instances where a heat exchanger with several wall layers including layers of material that are not highly conductive (such as a glass-lined kettle) is used.

    Nevertheless, some processes require a certain wall material, such as glass lining, to prevent reactivity with the product. Even so, the heat transfer rate may still be improved in such circumstances by changing the heat source from hot water to steam to optimize production.

     

    Advanced Understanding

    Fouling

    Fouling of the wall material surface can represent an additional barrier to heat transfer. This problem can occur on both the heating medium side and the product side for multiple reasons. Some causes can be particle deposits on the heating side, and excessively high or low temperatures on the product side.

    For example, steam pressure is sometimes raised to create the necessary pressure to push condensate through the outlet control valve on a level pot. However, with an increase in pressure within the heat exchanger, steam temperature rises accordingly, and this excessive heat can cause increased fouling on the product side. Conversely, if condensate is allowed to accumulate within equipment, fouling can be caused on the heating side by the debris entrained in the pooled condensate, and on the product side by lower temperatures that cause the product to cake onto the surface when required product viscosity is not maintained.

    Fouling can be added to the above equation by including the ratio of its thickness (LF) over its conductivity (λF), in the same manner as the glass-lining was added above, but is typically incorporated into and expressed as a fouling factor for an exchanger that has been “in-service”. Commonly, the calculations to compare reduction in U are for clean versus in-service duty.

    Related News

  • Overview of G7 Industrial Valves
    • Overview of G7 Industrial Valves

      14/05/2024

      G7 industrial valve is the general term for industrial valves manufactured by countries belonging to the G7 group, including the United States, Canada, England, France, Germany, Italy, and Japan. These valves are known for their high quality, reliability and durability in diverse industrial applications. Below is an overview of the main characteristics of the G7 industrial valve:

  • What is an industrial valve?
    • What is an industrial valve?

      25/04/2024

      What is an industrial valve? Industrial Valves are mechanical devices used in pipeline systems in industrial production environments, used to regulate and control the flow of fluid through the pipeline. Industrial valves are manufactured in a variety of designs and types, depending on the medium used, installation location and actual valve usage needs. IWISU distributes genuine imported industrial valves to the market at the most competitive prices, helping customers experience and use the best quality valves on the market.

  • Consulting and supplying high quality Saigon industrial valves
    • Consulting and supplying high quality Saigon industrial valves

      11/10/2023

      Are you looking for a reliable partner in providing and consulting on industrial valves in Saigon? Phuc Minh Company is proud to be a reliable address for all needs of valves and industrial equipment. With many years of experience in the industry, we are committed to bringing you optimal solutions and high quality products.

  • How much does an industrial valve cost? Guide to choosing the right price
    • How much does an industrial valve cost? Guide to choosing the right price

      11/10/2023

      One of the important challenges when looking to buy industrial valves is knowing the right price and choosing the right product for your specific needs. This article will help you better understand the issue "How much do industrial valves cost?" and provide guidance on choosing the right price.

  • Learn about leading and reputable industrial valve companies
    • Learn about leading and reputable industrial valve companies

      11/10/2023

      In industry, industrial valves play an indispensable role in controlling the flow of liquids, gases, and steam in production and management systems. To ensure safety, performance and compliance with technical and environmental standards, choosing leading and reputable industrial valve companies is an important decision.

    Online support
  • Consulting - Quotation
    Consulting - Quotation
  • Consulting-Technical
    Consulting-Technical
  • Consulting - Quotation
    Consulting - Quotation
  • Consulting - Technical
    Consulting - Technical
  • Consulting - Quotation
    Consulting - Quotation