1000TSS,1000TAS

GP-1000TAS

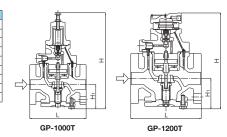
■Features

- 1. Stainless steel is used for wetted parts (GP-1000TSS) and all parts (GP-1000TAS), improving corrosion resistance.
- 2. Free of valve seat leakage. Improved workability as a result of refinement of sliding parts.
- 3. Simple and robust internal structure.

■Specifications

		Stainless steel wetted parts	All stainless steel	
Model		GP-1000TSS	GP-1000TAS	
Application		Air, Other non-dangerous fluids		
Inlet pressure		0.1-1.0 MPa		
Reduced pressure		0.05-0.9 MPa		
Adjusted reduced pressure		90% or less of inlet pressure (gauge pressure)		
Minimum differential pressure		0.05 MPa		
Maximum pressure reduction ratio		20:1		
Application temperature		5-80°C		
Valve seat leakage		None		
	Body	Cast stainless steel		
	Valve	Stainless steel (N	IBR contained)	
Material	Valve seat	Stainless steel		
	Piston, cylinder	Stainles	ess steel	
	Diaphragm	Stainles	s steel	
Connection		JIS 10K FF flanged		

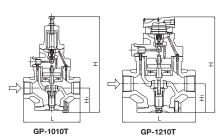
Description of GP-1000T Series model code



■Dimensions (mm) and Weights (kg)

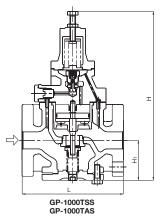
· GP-1000T · 1200T

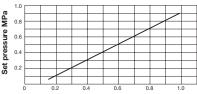
Nominal size	L	H ₁	Н	Weight
15A	150	64	285 (220)	8.0
20A	155	64	285 (220)	8.5
25A	160	67	300 (235)	10.0
32A	190	82	323 (258)	14.0
40A	190	82	323 (258)	14.5
50A	220	93	347 (282)	20.0
65A	245	100	357 (292)	30.0
80A	290	122	404 (339)	35.0
100A	330	144	450 (385)	52.5


^{*} The above values in parentheses are the dimensions of the GP-1200T.

· GP-1010T · 1210T

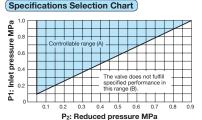
Nominal size	d	L	H ₁	Н	Weight
15A	Rc 1/2	150	64	285 (220)	7.0
20A	Rc 3/4	155	64	285 (220)	7.0
25A	Rc 1	160	67	300 (235)	8.5
32A	Rc 1-1/4	190	82	323 (258)	12.0
40A	Rc 1-1/2	190	82	323 (258)	12.5
50A	Rc 2	220	93	347 (282)	18.0


^{*} The above values in parentheses are the dimensions of the GP-1210T.


· GP-1000TSS · 1000TAS

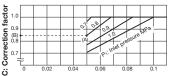
Nominal size	L	H ₁	Н	Weight
15A	150	67	288 (298)	8.3 (8.5)
20A	155	67	288 (298)	8.8 (9.0)
25A	160	70	303 (313)	10.5 (10.7)
32A	190	85	326 (336)	14.8 (15.0)
40A	190	85	326 (336)	15.3 (15.5)
50A	220	96	350 (360)	20.8 (21.0)

^{*} The above values in parentheses are the dimensions and weights of the GP-1000TAS.



■Loading Air Pressure-set Pressure Chart

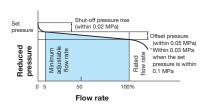
Basically, the set pressure to the loading air pressure is as shown in the chart on the left. The set pressure is slightly different depending on the conditions. In this case, adjust the loading air pressure.


Loading air pressure MPa

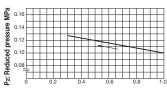
Find the intersection point of the inlet and reduced pressures. If the intersection point is within range (A), the pressures are controllable. The valve does not fulfill specified performance if the intersection point lies in range (B).

Table of Corrected Cv Values

Please refer to 11-14 for Cv value.

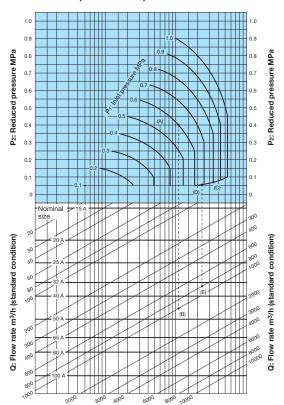

P2: Reduced pressure MPa

If the inlet pressure exceeds 0.7 MPa, and the pressure reducing ratio exceeds 10:1, find the appropriate correction coefficient C using chart above, and multiply the rated Cv value, and obtain the corrected Cv value. Example


Take a pressure reducing valve whose inlet pressure is 0.8 MPa, the reduced pressure is 0.05 MPa. Find the inlet and reduced pressure intersection point (A) at the above chart, then draw a horizontal line in the leftward direction to point (B) which indicates a correction coefficient of 0.85. For a nominal size of 25A, the corrected Cv value would be calculated as follows:

■GP-1000T Series Selection Chart

Flow Characteristic Chart


Pressure Characteristic Chart

P₁: Inlet pressure MPa

This chart shows variation in reduced pressure when the inlet pressure of 1.0 MPa is changed between 0.3 MPa and 1.0 MPa while the reduced pressure is set at 0.1 MPa.

■Nominal Sizes Selection Chart (Fluid: 20°C Air)

[Example 1]

When selecting the nominal size of a pressure reducing valve whose inlet pressure (P₁), reduced pressure (P₂), and air flow rate are 0.6 MPa, 0.4 MPa, and 1,000 m³/h (standard condition), respectively, first find intersection point (A) of the inlet pressure of 0.6 MPa and the reduced pressure of 0.4 MPa. Trace down vertically from this intersection point to find intersection point (B) with the flow rate of 1,000 m³/h (standard condition). Since intersection point (B) lies between nominal sizes 40A and 50A, select the larger one, 50A.

[Example 2]

When selecting the nominal size of a pressure reducing valve whose inlet pressure (P₁), reduced pressure (P₂), and air flow rate are 0.8 MPa, 0.05 MPa, and 800 m³/h (standard condition), respectively, first find intersection point (C) of the inlet pressure of 0.8 MPa and the diagonal line. Trace down to the left from the diagonal line to find intersection point (D) with the reduced pressure of 0.05 MPa. Trace down vertically from intersection point (D) to find intersection point (E) with the flow rate of 800 m³/h (standard condition). Since intersection point (E) lies between nominal sizes 32A and 40A, select the larger one, 40A.

* Set the safety factor at 80 to 90%.